How to create successful AI agent data?
Original author: jlwhoo7, Crypto Kol
Original translation: zhouzhou, BlockBeats
Editor's note:This article shares tools and methods that help improve the performance of AI agents, with a focus on data collection and cleaning. A variety of no-code tools are recommended, such as tools for converting websites to LLM-friendly formats, and tools for Twitter data crawling and document summarization. Storage tips are also introduced, emphasizing that the organization of data is more important than complex architecture. With these tools, users can efficiently organize data and provide high-quality input for the training of AI agents.
The following is the original content (the original content has been reorganized for easier reading and understanding):
We see many AI agents launched today, 99% of which will disappear.
What makes successful projects stand out? Data.
Here are some tools that can make your AI agent stand out.

Good data = good AI.
Think of it like a data scientist building a pipeline:
Collect → Clean → Validate → Store.
Before optimizing your vector database, tune your few-shot examples and prompt words.

I view most of today’s AI problems as Steven Bartlett’s “bucket theory” — solving them piece by piece.
First, lay a good data foundation, which is the foundation for building a good AI agent pipeline.

Here are some great tools for data collection and cleaning:
Code-free llms.txt generator: convert any website to LLM-friendly text.

Need to generate LLM-friendly Markdown? Try JinaAI's tool:
Crawl any website with JinaAI and convert it to LLM-friendly Markdown.
Just prefix the URL with the following to get an LLM-friendly version:
http://r.jina.ai<URL>

Want to get Twitter data?
Try ai16zdao's twitter-scraper-finetune tool:
With just one command, you can scrape data from any public Twitter account.
(See my previous tweet for specific operations)

Data source recommendation: elfa ai (currently in closed beta, you can PM tethrees to get access)
Their API provides:
Most popular tweets
Smart follower filtering
Latest $ mentions
Account reputation check (for filtering spam)
Great for high-quality AI training data!

For document summarization: Try Google's NotebookLM.
Upload any PDF/TXT file → let it generate few-shot examples for your training data.
Great for creating high-quality few-shot hints from documents!

Storage Tips:
If you use virtuals io's CognitiveCore, you can upload the generated file directly.
If you run ai16zdao's Eliza, you can store data directly into vector storage.
Pro Tip: Well-organized data is more important than fancy schemas!

You may also like

Who's at the CFTC Table? A Rebalancing of American Fintech Discourse
AI Trading vs Human Crypto Traders: $10,000 Live Trading Battle Results in Munich, Germany (WEEX Hackathon 2026)
Discover how AI trading outperformed human traders in WEEX's live Munich showdown. Learn 3 key strategies from the battle and why AI is changing crypto trading.
Elon Musk's X Money vs. Crypto's Synthetic Dollars: Who Wins the Future of Money?
How do Synthetic Dollars work? This guide explains their strategies, benefits over traditional stablecoins like USDT, and risks every crypto trader must know.

The Israeli military is hunting a mole on Polymarket

Q4 $667M Net Loss: Coinbase Earnings Report Foreshadows Challenging 2026 for Crypto Industry?

BlackRock Buying UNI, What's the Catch?

Lost in Hong Kong

Gold Plunges Over 4%, Silver Crashes 11%, Stock Market Plummet Triggers Precious Metals Algorithmic Selling Pressure?

Coinbase and Solana make successive moves, Agent economy to become the next big narrative

Aave DAO Wins, But the Game Is Not Over

Coinbase Earnings Call, Latest Developments in Aave Tokenomics Debate, What's Trending in the Global Crypto Community Today?

ICE, the parent company of the NYSE, Goes All In: Index Futures Contracts and Sentiment Prediction Market Tool

On-Chain Options: The Crossroads of DeFi Miners and Traders

How WEEX and LALIGA Redefine Elite Performance
WEEX x LALIGA partnership: Where trading discipline meets football excellence. Discover how WEEX, official regional partner in Hong Kong & Taiwan, brings crypto and sports fans together through shared values of strategy, control, and long-term performance.

Best Crypto to Buy Now February 10 – XRP, Solana, Dogecoin
Key Takeaways XRP is set to revolutionize cross-border transactions, potentially reaching $5 by the end of Q2 with…

Kyle Samani Criticizes Hyperliquid in Explosive Post-Departure Market Commentary
Key Takeaways: Kyle Samani, former co-founder of Multicoin Capital, publicly criticizes Hyperliquid, labeling it a systemic risk. Samani’s…

Leading AI Claude Forecasts the Price of XRP, Cardano, and Ethereum by the End of 2026
Key Takeaways: XRP’s value is projected to reach $8 by 2026 due to major institutional adoption. Cardano (ADA)…

Bitcoin Price Prediction: Alarming New Research Cautions Millions in BTC at Risk of ‘Quantum Freeze’ – Are You Ready?
Key Takeaways Quantum Threat to Bitcoin: The rise of quantum computing presents a unique security challenge to Bitcoin,…
Who's at the CFTC Table? A Rebalancing of American Fintech Discourse
AI Trading vs Human Crypto Traders: $10,000 Live Trading Battle Results in Munich, Germany (WEEX Hackathon 2026)
Discover how AI trading outperformed human traders in WEEX's live Munich showdown. Learn 3 key strategies from the battle and why AI is changing crypto trading.
Elon Musk's X Money vs. Crypto's Synthetic Dollars: Who Wins the Future of Money?
How do Synthetic Dollars work? This guide explains their strategies, benefits over traditional stablecoins like USDT, and risks every crypto trader must know.